Telegram Group & Telegram Channel
Какие методы и техники вы бы использовали для решения проблемы затухающего градиента при обучении модели seq2seq, особенно когда входная последовательность длиннее, чем выходная, и какие меры предприняли бы, чтобы справиться с потерей информации на начальных этапах декодирования?

1. Архитектурные модификации: использование архитектур, которые способствуют передаче информации на большие расстояния, таких как архитектуры с аттеншн-механизмами (например, Transformer). Аттеншн-механизм позволяет модели фокусироваться на разных частях входной последовательности в процессе декодирования, что уменьшает вероятность затухания градиента.
2. Skip Connections: Включение пропускающих соединений в архитектуру, чтобы градиент мог путешествовать на более длинные расстояния между входом и выходом.
3. Residual Connections: Аналогично skip connections, но с добавлением остаточных соединений, что позволяет сети изучать разницу между текущим состоянием и предыдущим, помогая справляться с затухающим градиентом.
4. Layer Normalization и Batch Normalization: Нормализация слоев и батчей может помочь уменьшить влияние затухания градиента на обучение.
5. Scheduled Sampling: Использование стратегии постепенного внедрения сгенерированных токенов в качестве входа вместо реальных токенов для учебных данных. Это может помочь модели привыкнуть к собственным предсказаниям.
6. Gradient Clipping: Ограничение нормы градиента, чтобы избежать роста градиента.



tg-me.com/ds_interview_lib/31
Create:
Last Update:

Какие методы и техники вы бы использовали для решения проблемы затухающего градиента при обучении модели seq2seq, особенно когда входная последовательность длиннее, чем выходная, и какие меры предприняли бы, чтобы справиться с потерей информации на начальных этапах декодирования?

1. Архитектурные модификации: использование архитектур, которые способствуют передаче информации на большие расстояния, таких как архитектуры с аттеншн-механизмами (например, Transformer). Аттеншн-механизм позволяет модели фокусироваться на разных частях входной последовательности в процессе декодирования, что уменьшает вероятность затухания градиента.
2. Skip Connections: Включение пропускающих соединений в архитектуру, чтобы градиент мог путешествовать на более длинные расстояния между входом и выходом.
3. Residual Connections: Аналогично skip connections, но с добавлением остаточных соединений, что позволяет сети изучать разницу между текущим состоянием и предыдущим, помогая справляться с затухающим градиентом.
4. Layer Normalization и Batch Normalization: Нормализация слоев и батчей может помочь уменьшить влияние затухания градиента на обучение.
5. Scheduled Sampling: Использование стратегии постепенного внедрения сгенерированных токенов в качестве входа вместо реальных токенов для учебных данных. Это может помочь модели привыкнуть к собственным предсказаниям.
6. Gradient Clipping: Ограничение нормы градиента, чтобы избежать роста градиента.

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/31

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

If riding a bucking bronco is your idea of fun, you’re going to love what the stock market has in store. Consider this past week’s ride a preview.The week’s action didn’t look like much, if you didn’t know better. The Dow Jones Industrial Average rose 213.12 points or 0.6%, while the S&P 500 advanced 0.5%, and the Nasdaq Composite ended little changed.

Newly uncovered hack campaign in Telegram

The campaign, which security firm Check Point has named Rampant Kitten, comprises two main components, one for Windows and the other for Android. Rampant Kitten’s objective is to steal Telegram messages, passwords, and two-factor authentication codes sent by SMS and then also take screenshots and record sounds within earshot of an infected phone, the researchers said in a post published on Friday.

Библиотека собеса по Data Science | вопросы с собеседований from br


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA